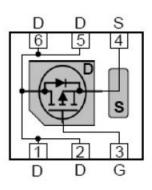


P-Channel Enhancement Mode MOSFET

Features

VDS	VGS	RDSON Typ.	ID
-20V	+12V	14mR@-4V5	-10A
-200	TIZV	20mR@-2V5	-10A

> Description


This device is produced with high cell density DMOS trench technology, which is especially used to minimize on-state resistance. This device particularly suits low voltage applications such as portable equipment, power management and other battery powered circuits.

> Applications

- Load Switch
- Portable Devices
- DCDC conversion
- Charging
- Driver for Relay

> Pin configuration

Top view

Bottom View

Marking

> Ordering Information

Device	Package	Shipping		
SSC8123GN2	DFN2x2	3000/Reel		

> Absolute Maximum Ratings(T_A=25°C unless otherwise noted)

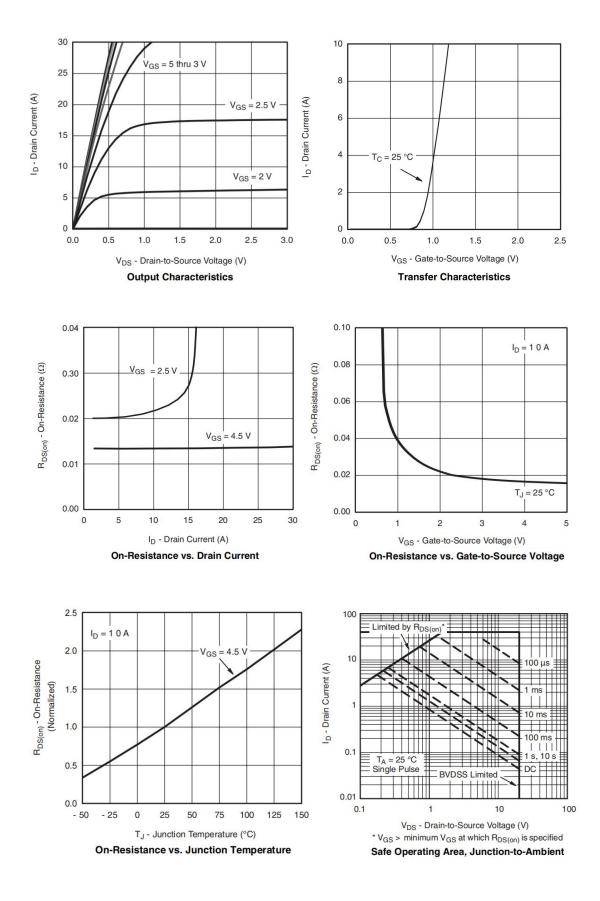
Symbol	Parameter	Ratings	Unit
V _{DSS}	Drain-to-Source Voltage	-20	V
V _{GSS}	Gate-to-Source Voltage	±12	V
ID	Continuous Drain Current ^a	-10	А
І _{DM}	Pulsed Drain Current ^b	-40	А
PD	Power Dissipation ^c	2.7	W
TJ	Operation junction temperature	-55 to 150	°C
Т _{stg}	Storage temperature range	-55 to 150	°C

> Thermal Resistance Ratings(T_A=25℃ unless otherwise noted)

Symbol	Parameter	Ratings	Unit
R _{0JA}	Junction-to-Ambient Thermal Resistance ^a	45	°C/W

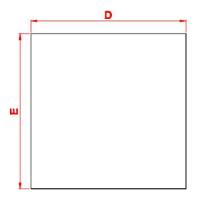
Note:

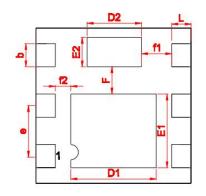
- a. The value of R_{θJA} is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with T_A=25°C.The value in any given application depends on the user is specific board design.
- b. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.
- c. The power dissipation P_D is based on T_{J(MAX)}=150°C, using steady state junction-to-ambient thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.



> Electronics Characteristics($T_A=25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	VGS=0V , ID=-250uA	-20			V
$V_{GS\ (th)}$	Gate Threshold Voltage	VDS=VGS , ID=-250uA	-0.4	-0.7	-1	V
Provide	Drain-Source	VGS=-4.5V , ID=-4.5A		14	20	mR
$R_{DS(on)}$	On-Resistance	Resistance VGS=-2.5V , ID=-2.5A		20	29	
I _{DSS}	Zero Gate Voltage Drain Current	VDS=-16V , VGS=0V			-1	uA
I _{GSS}	Gate-Source leak current	VGS=±12V , VDS=0V			±100	nA
G _{FS}	Transconductance	VDS=-5V , ID=-10A		20		S
V_{SD}	Forward Voltage	VGS=0V , IS=-2.2A		-0.8	-1.3	V
Rg	Gate resistance	VDS=0V, f=1MHz		2.7		R
Ciss	Input Capacitance			1520		
Coss	Output Capacitance	VDS=-10V , VGS=0V, f=1MHz		182		pF
Crss	Reverse Capacitance			158		
T _{D(ON)}	Turn-on delay time			12		
Tr	Rise time	VGS=-4.5V, VDS=-10V, RL=1R		22		
$T_{D(OFF)}$	Turn-off delay time	RG=3R		45		ns
Tf	Fall time			23		
Qg	Total Gate charge			16		
Qgs	Gate Source charge	VGS=-4.5V, VDS=-10V ID=-10A		3		nC
Qgd	Gate Drain charge			4		
trr	Reverse Recovery Time	IF=-10A, dl/dt=100A/µs		15		ns
Qrr	Reverse Recovery Charge	IF=-10A, dl/dt=100A/µs		6		nC




> Typical Characteristics(T_A=25°C unless otherwise noted)

> Package Information

TOP VIEW

	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
Α	0.700	0.750	0.800	
* A1	0.000	0.020	0.050	
* b	0.250	0.300	0.350	
* A2	0.190	0.210	0.230	
* D	1.900	2.000	2.100	
* E	1.900	2.000	2.100	
* E1	0.900	0.950	1.000	
*E2	0.330	0.380	0.430	
* D1	1.100	1.150	1.200	
* D2	0.650	0.700	0.750	
* e	0.600	0.650	0.700	
* L	0.225	0.250	0.275	
* F	0.300	0.350	0.400	
* f1	0.350	0.400	0.450	
* f2	0.180	0.200	0.220	

AFSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.